
Porting Numerical Linear Algebra 
Libraries across Exascale Hardware 

Platforms and Beyond
Piotr Luszczek (speaker)

Hartwig Anzt*, Mark Gates, Stanimire Tomov

University of Tennessee, Knoxville; *Karlsruhe Institute of Technology

P3HPC Forum, September 2, 2020



Scope: Libraries and Platforms
• Numerical libraries

• Ginkgo
• Sparse storage formats, iterative solvers, 

preconditioners, multigrid, SpMv
• Variants: reference, OpenMP, accelerators

• MAGMA
• Dense: linear and eigenvalue/SVD
• Sparse: iterative, preconditioners, storage
• Mixed precision: 16-, 32-, and 64-bit solve
• Variants: CUDA, clMagma, micMagma

• PLASMA
• Dense: linear, least-squares, EIG/SVD
• Tile matrix layout and OpenMP 4 tasking
• Variants: POSIX, WinThreads, OpenMP 4

• SLATE
• Distributed memory, multicore and GPUs
• Flexible tile storage with affinity tracking

• ECP hardware/software
• NVIDIA CUDA 10 and 11

• Summit, Perlmutter
• AMD HIP and rocM

• Perlmutter, Frontier, Cray CCE
• Intel DPC++

• Aurora

• CI/CD systems
• Cloud VMs and bare metal systems

• Any modern x86-64
• POWER
• ARM

2



General Approach
• Common interfaces
• Reuse or emulate established interfaces

• DGEMM(), cuDgemm(), hipDgemm()

• Abstractions
• Well defined and practical objects
• Focus on user experience

• Object hierarchy for matrix, vector, execution policy (device)

• Generic algorithms
• Programming against generic types
• Testing on concrete types

3



Use Case: Ginkgo



Ginkgo: from CUDA to HIP
• Kernels
• Mostly shared between CUDA and HIP
• Considered common
• Abstracting away non-portable features

• Cooperative groups

• Backend-specific optimizations
• Always added for new backend
• Must be maintained independently

5

CUDA only CUDA & HIP



Ginkgo Porting Remarks and Challenges
• CUDA and HIP are now relevant alternatives for Ginkgo functionality
• Similarities of HIP/CUDA syntax allow for significant sharing
• Even for low-level implementations

• (In case of Ginkgo) compiling HIP to target NVIDIA devices has moderate 
effect on performance
• Comparable performance of CUDA/HIP across Ginkgo functionality

6



Use Case: MAGMA



MAGMA: dense and sparse linear algebra
• MAGMA’s scope exposed issues in HIP stack
• Filed with AMD and fixed with HIP/rocM 3.5

• Automated approach necessary due to a large code base
• Hippify’ing tools have their limits for MAGMA code base
• Remaining issues fixed with automation (again: see code size and its changes)

• Performance results
• Still work in progress across MAGMA, HIP, and rocM libraries
• No clear winner or guidelines emerge yet

8



Performance Results: DGEMM on MI25 & MI50

9

hipMAGMA 1.0



Use Case: PLASMA



PLASMA: dense linear algebra for OpenMP 4+

11

AcceleratorsMulticore



Use Case: SLATE



SLATE: dense and low-rank algorithms
• Large scope in terms of hardware
• Multicore

• ARM, POWER
• GPUs

• CUDA, HIP, DPC++
• Distributed memory

• MPI (multithreaded)

• Large algorithmic scope
• Dense algorithms: linear, least-squares, eigenvalue, SVD
• Matrix types and storages: rectangular, square, triangular, trapezoidal
• Low-rank algorithms (ACA, low-rank tiles, …)

• Currently, work in progress

13


